If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6=24
We move all terms to the left:
3x^2+6-(24)=0
We add all the numbers together, and all the variables
3x^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $
| 9x/16=45/20 | | 16^x+8=64 | | -7(x-4)=2x-35 | | 6-2x=8x+16 | | 15/4-3x=1/4 | | x+2x68=180 | | 3/4=9p/8 | | 1/3x=6/11 | | -8v=10 | | x+46+67=180 | | -3(x+8)=-42 | | -179=4x-5(7x-20) | | -6x-6(5x-14)=-132 | | -36x=236 | | 2z+3=4z-3 | | -3x+5(5x+2)=142 | | X-(x×.26)=259 | | -3x+5(x+2)=142 | | 1/7m-1=4 | | 18w+16=6 | | 17w+13=7 | | x-30)/18=26/8 | | 13-7c=8+-2 | | 112+1a=108 | | -3x+4(2x-17)=-128 | | 37-4t=7-10t | | (x-7)÷5=(x-2)÷3 | | 3-2z=9+4z | | 160=-6x+2(-7x-10) | | 12−8n=8−10n | | 3b-12=6b | | Y=4(1.05)^x |